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ABSTRACT 40 

 Fungi are key players in the health, diversity, and productivity of forest ecosystems in 41 

Pacific Northwest forests, as mycorrhizal associations, pathogens and decomposers, non-timber 42 

resources, and food resources for wildlife.  A number of invertebrates are associated with wood 43 

decay fungi, serve as vectors for fungal pathogens, or are fungivorous (consume fungi) and 44 

influence rates of wood decay and nutrient mineralization.  In Washington and Oregon, 31 45 

wildlife species among 8 families are fungivores, and at least 14 wildlife species disperse fungi.  46 

Down wood can provide nurse substrates for seedlings and beneficial mycorrhizal fungi, refuges 47 

from pathogenic soil fungi, sources of nutrients for decay fungi, and substrates supporting 48 

overall fungal diversity.  Presence, density, distribution, and diversity of fungi are influenced by 49 

forest stand management practices, forest age class, and effects of fire.  Old forests provide for a 50 

suite of rare fungi species.  Old legacy trees retained during forest harvest can provide some 51 

degree of conservation of beneficial and rare fungi.  Fungi can be difficult to detect and monitor; 52 

surveying for fungi at various times of the year, for multiple (at least 5) years, and by including 53 

hypogeous (below-ground) samples, can improve detection rates.  Studies are needed in the 54 

Pacific Northwest to quantify the amount of down wood -- number of pieces, sizes, total 55 

biomass, percent forest floor cover, and other attributes -- necessary for maintaining or restoring 56 

fungal biodiversity and viable levels of individual fungi species, especially rare species.   57 

 58 

  59 
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WHO ARE THE FUNGI? 60 

 Formally, the term fungi as used here refers to the general taxonomic group of organisms 61 

that includes rusts, smuts, mildews, molds, yeasts, and mushrooms, and our focus in this review 62 

is largely on the mushrooms associated with wood decay.  Fungi most associated with wood 63 

decay are the filamentous species of Basidiomycota and Ascomycota (Arnstadt et al. 2016, Swift 64 

1982).  65 

 More casually, fungi also can include the fungus-like slime molds and water molds.  66 

Although not discussed here, these nonetheless can be important ecologically and economically, 67 

and are more often considered in forest management under pathogen and disease programs.  For 68 

example, the water mold Phytophthora ramorum is responsible for sudden oak death, a forest 69 

disease causing widespread killing of oaks and other trees in the Pacific Northwest (Cobb et al. 70 

2012, Rizzo and Garbelotto 2003).   71 

 This review covers the various roles and relationships of fungi in wood decay in forests 72 

of the Pacific Northwest, U.S.  I also include reference to studies conducted outside the Pacific 73 

Northwest when local research on specific topics is unavailable.   74 

 75 

ECOLOGICAL FUNCTIONS OF FUNGI 76 

 Fungi play a number of ecological roles in forest ecosystems that affect the health, 77 

diversity, productivity, and development of their biotic communities.  Such roles include 78 

mycorrhizal associations with vascular plants, pathogens of commercial tree species, 79 

decomposers of coarse organic material, and food resources for wildlife.   80 

 81 

 82 
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Mycorrhizal Associations 83 

 Mycorrhizal fungi consist of strings of hyphae that form mutualistic symbiotic 84 

relationships with roots of vascular plants, including trees of commercial value, and that aid the 85 

plant in nutrient and water update, while the fungi benefit by receiving carbon.  Two forms of 86 

mycorrhizae are those that grow hyphae from a mantle surrounding the plant roots 87 

(ectomycorrhizae) and those with mycelia that embed within the root tissue itself 88 

(endomycorrhizae).  Allen (1991), O'Dell et al. (1993), and Smith and Read (1997) provided 89 

reviews of the structure and function of mycorrhizal fungi.   90 

 91 

Fungi as Pathogens 92 

 Fungi can also act as pathogens on trees, serving as a cause of tree mortality and altering 93 

forest stand structure by opening canopy gaps that, in turn, allow sunlight to penetrate to the 94 

forest floor, spurring growth of understory plants and increasing or altering the diversity of plant 95 

species (Holah et al. 1993) and other fungi (Christensen 1989).  Pathogenic fungi contribute to 96 

the accumulation of dead and decaying wood in a forest.  Some pathogenic fungi such as heartrot 97 

fungi can create habitat conditions for primary and secondary cavity-nesting wildlife species and 98 

can alter nutrient cycling (Hennon 1995).   99 

 100 

Fungi as Decomposers 101 

 Fungi associated with down wood are saprobic, meaning that they derive nutrients from 102 

decaying organic material.  One such species in the Pacific Northwest is orange jelly 103 

(Dacrymyces chrysospermus) found on decaying logs of Douglas-fir (Pseudotsuga menzeisii; 104 

Fig. 1).  Other unique fungi associated with down wood and wood decay in the Pacific 105 
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Northwest are the birds' nest fungus, Nidula niveotomentosa (Fig. 2) and the veined cup, 106 

Disciotis venosa (Fig. 3). 107 

 Fungi found in decaying wood, litter, and duff serve to recycle nutrients (Fogel and Hunt 108 

1983, Hattenschwiler et al. 2005), particularly nitrogen and carbon, as well as minerals, which 109 

can then be used by other organisms.  Such decomposition processes also serve to physically and 110 

chemically break down soil organic matter and alter soil structure.  In coarse down wood, wood 111 

fungi help mobilize nitrogen, phosphorus, and potassium during the early decay stages (Harmon 112 

et al. 1994).  Wood decomposition in German forests of European beech (Fagus sylvatica), 113 

Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is dominated by white-rot fungi 114 

(Phanerochaete chyrsosporium) which breaks down lignin in wood (Arnstadt et al. 2016). 115 

 In cool temperate and subalpine forests of Japan, Osono (2015) found that litter 116 

decomposition was more affected by presence of specific fungal families than by the type of 117 

litter.  Fungi of Basidiomycetes had higher rates of lignin breakdown than did fungi of 118 

Xylariaceae.   119 

 In western Montana, Harvey et al. (1981) found that soil organic matter ≤ 45 percent by 120 

volume of the top 30 cm of soil was associated with increased numbers of ectomycorrhizae, but 121 

at > 45 percent the numbers decreased, and the relationship of soil organic matter and 122 

ectomycorrhizae was more salient in dry rather than moist sites.   123 

 In studying the role of fungi in decomposition of oak stumps, van der Wal et al. (2015) 124 

reported finding unique fungal communities in freshly cut trees and in younger stumps, and that 125 

old stumps harbored more random assortments of fungal species.  They also found that 126 

ascomycete fungi likely play a prominent role in wood decay but further testing is needed, and 127 

that better understanding fungal roles of wood decay can help improve estimates of carbon 128 
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sequestration of forests.  In southern Sweden, Tyler (1992) likewise found distinct communities 129 

of ectomycorrhizal fungi associated with early decay stages of hardwoods.   130 

 131 

Fungi as Non-Timber Forest Products 132 

 Fungi -- particularly above-ground fruiting mushrooms such as chanterelles, morels, 133 

matsutake, boletes, truffles, ganoderma (reishi) and others -- are sought for food, medicinal 134 

value, and recreational collection, in an expanding industry (Molina et al. 1993, Schlosser and 135 

Blatner 1995, Amaranthus and Pilz 1996, Pilz et al. 1998).  Kucuker and Baskent (2017) 136 

developed a simulation-based decision-support model to assess the effects of forest management 137 

intensity on mushroom occurrence and production.  Although developed for northwest Turkey, 138 

their system may hold potential for guiding multiple-use forest management in the Pacific 139 

Northwest.  In a Scots pine forest of central Spain, intensive collection of seasonal sporocarps 140 

(above-ground fruiting bodies) of king boletes (Boletus edulis) during four productive seasons 141 

did not significantly reduce its below-ground mycelium biomass, so that the mushroom was able 142 

to sustain its productivity (Parladé et al. 2017).  This may have implications for monitoring, 143 

discussed further below.   144 

 145 

Fungi as Food Resources for Wildlife 146 

 Fungi themselves are ingested by a wide variety of invertebrate and vertebrate wildlife 147 

(Fogel and Trappe 1978, Maser et al. 1978, Ingham and Molina 1991), as discussed more fully in 148 

the next section.   149 

 150 

  151 
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FUNGI AND INVERTEBRATES 152 

 Furniss and Carolin (1980) provided a number of examples of insect associations with 153 

fungi in forests of the western U.S., as follows.  Bark beetles are associated with trees weakened 154 

or killed by root-rotting fungi such as Porioa root rot (Phellinus weirii), annosus root rot (Fomes 155 

annosus), and shoestring rot (Armillaria mellea and Phytophthora lateralis).  Some insects, 156 

including the smaller European elm bark beetle (Scolytus multistriatus), disperse disease-causing 157 

fungi, thereby infecting healthy trees.  Stain fungi is introduced into weakened trees by bark 158 

beetles (especially the western balsam bark beetle, Dryocoetes confusus), ambrosia beetles 159 

(subfamilies Scolytinae and Platypodinae of Curculionidae), and wood borers (many species and 160 

families), the last of which can also mine in sound wood and thereby increase the penetration of 161 

wood-rotting fungi in down trees and logs.  Ambrosia beetles in particular disperse, introduce, 162 

and feed on ambrosia fungi (Ambrosiella and Raffaelea) and can be highly fungi species-163 

specific.  Fir engraver beetles (Scolytus spp.) can disperse and introduce brown-stain fungus 164 

(Trichosporium symbioticum).  Some bark beetles (Gnathotrichus sulcatus) store and 165 

disseminate the symbiotic fungi Ambrosiella sulcati and Raffaelea sulcati, and the larvae of 166 

some horntail insects (Sirex and Urocerus) feed upon the symbiotic fungi Amylostereum.  167 

Subterranean termites that comminute (chew) wood fiber are attracted to the wood-decaying 168 

fungus Lenzites trabea.  Among invertebrates associated with yeasts are roundheaded beetles 169 

(Dendroctonus spp.), bark beetles, and carpenter ants (Camponotus spp.).  Silver fir beetles 170 

(Pseudohylesinus sericeus) can be commonly associated with brown-stain fungi and root-rotting 171 

fungi including Armillaria mellea, Fomes annosus, and Phellinus weirii.   172 

 In general, wood-boring insects are known to transport many fungal genera (Schowalter 173 

2000).  Ulyshen (2016) reported that invertebrates that are particularly influential in promoting 174 
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wood decomposition include wood-boring beetles (Coleoptera) and termites (Termitoidae) 175 

especially fungus-farming macrotermitines.  In a broad study of 13 temperate tree species, Kahl 176 

et al. (2017) found that wood decay rates were mediated by enzyme activity and diversity of 177 

beetle species.  Wood decays more rapidly when it incurs decay fungi introduced by wood-178 

boring beetles, wasps, and termites, than when it is initially inoculated with mold fungi by bark 179 

and ambrosia beetles (Schowalter 2000).  This is because mold fungi can catabolize 180 

carbohydrates and thereby inhibit later colonization of decay fungi.   181 

 Species interactions that affect changes in fungal and insect communities during wood 182 

decay are, in general, poorly understood, and long-term studies are needed.  In a boreal forest in 183 

central Sweden, Weslien et al. (2011) found that a bark beetle (Hylurgops palliatus) and a wood-184 

borer (Monochamus sutor) colonized stumps during the first year following cutting; their 185 

saproxylic (decaying or dead wood-dependent) functions were mediated by the wood-decaying 186 

fungus Fomitopsis pinicola, which eventually provided habitat in the stumps 10 years later for a 187 

rare, wood-living beetle Peltis grossa.  Thus, the researchers suggested this as an example of 188 

managing for rare or threatened insect species by understanding the links between saproxylic 189 

taxa such as the beetles and the fungi.   190 

 Some members of the darkling beetle family Tenebrionidae are associated with fungi 191 

(White 1983; Fig. 4).  For example, the forked fungus beetle Bolitotherus cornutus is nocturnal 192 

and during the day they inhabit hard shelf fungi or crevices where the fungi are attached.  The 193 

darkling beetles Diaperis spp. and Playtdema spp. occur under bark and in fungi.   The aptly-194 

named handsome fungus beetles of family Endomychidae, such as the Idaho handsome fungus 195 

beetle Mycetina idahoensis, occur under bark in rotting wood and in fungi on which they feed 196 

(Haggard and Haggard 2006). 197 
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 Fungivorous insects are typically associated with late-successional forests (Schowalter 198 

2000) and can influence the diversity of fungi in decaying wood in both managed and natural 199 

forests (Muller et al. 2002).  Fungivorous springtails apparently serve to transfer secondary 200 

metabolites (catalpol, an iridoid glucoside) from host plants to arbuscular endomycorrhizal fungi 201 

(Duhamel et al. 2013).  This functions in the fungi to prevent it from being grazed.  In this triad 202 

of relationships, the springtails benefit from the fungal food source, the fungi benefits from 203 

avoiding grazing, and the host plant benefits from using the symbiotic fungi to absorb soil 204 

nutrients.   205 

 In other symbiotic relationships, Macrotermitinae termites deposit all their feces in their 206 

tended gardens of the fungus Termitomyces spp. (Basidiomycetes).  Individual termite species of 207 

this group tend to be associated with, and feed only on, specific species of these fungi (Edwards 208 

2000).   209 

 Nutrients in woodland soils can be greatly affected by some invertebrate associations 210 

with fungi, as reported by Crowther et al. (2011a).  Invertebrate grazers in soil can determine the 211 

composition of fungal decomposer communities.  For example, isopods were found to feed 212 

selectively on the cord-forming fungus Resinicium bicolor, thus preventing the competitive 213 

exclusion of two fungi species in soil and wood.  Similar mediating functions were also observed 214 

with soil nematodes.  Thus, conditions affecting soil invertebrates can also affect their influence 215 

on fungal communities and associated nutrient cycles.  Also, invertebrate fungivory can 216 

influence decay rates of wood and nutrient mineralization and decomposition (Crowther et al. 217 

2011b).   218 

 Some mycorrhizal fungi produce nonnitrogeneous chemical defenses including 219 

pyrethroids that are toxins absorbed through insect exoskeletons (Schowalter 2000).   220 
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 221 

FUNGI AND WILDLIFE 222 

 In Washington and Oregon, some 31 wildlife species among 8 families are known to be 223 

fungivores (Table 1).   224 

 225 

 226 

Table 1.  Fungivorous wildlife species of Washington and Oregon (source: O'Neill et al. 2001, 227 

Jacobs and Luoma 2008).  * = also disperses fungi 228 

 229 

Family  Common name Scientific name 

Cervidae Black-tailed Deer Odocoileus hemionus columbianus 

Cervidae Mule Deer Odocoileus hemionus hemionus 

Cervidae Rocky Mountain Elk* Cervus elaphus nelsoni 

Cervidae Roosevelt Elk* Cervus elaphus roosevelti 

Dipodidae Pacific Jumping Mouse Zapus trinotatus 

Geomyidae Camas Pocket Gopher Thomomys bulbivorus 

Geomyidae Northern Pocket Gopher Thomomys talpoides 

Geomyidae Townsend's Pocket Gopher Thomomys townsendii 

Muridae Bushy-tailed Woodrat Neotoma cinerea 

Muridae Canyon Mouse Peromyscus crinitus 

Muridae Columbian Mouse* Peromyscus keeni 

Muridae Creeping Vole Microtus oregoni 

Muridae Deer Mouse* Peromyscus maniculatus 

Muridae Pinon Mouse Peromyscus truei 

Muridae Southern Red-backed Vole* Myodes gapperi 

Muridae Western Red-backed Vole* Myodes californicus 

Muridae White-footed Vole* Arborimus albipes 

Ochotonidae American Pika Ochotona princeps 

Sciuridae Douglas' Squirrel* Tamiasciurus douglasii 

Sciuridae Golden-mantled Ground Squirrel Spermophilus lateralis 

Sciuridae Least Chipmunk* Tamias minimus 

Sciuridae Northern Flying Squirrel* Glaucomys sabrinus 

Sciuridae Red Squirrel* Tamiasciurus hudsonicus 

Sciuridae Townsend's Chipmunk Tamias townsendii 

Sciuridae Siskiyou Chipmunk* Tamias siskiyou 

Sciuridae Western Gray Squirrel* Sciurus griseus 
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Sciuridae Yellow-pine Chipmunk Tamias amoenus 

Soricidae Pacific Shrew Sorex pacificus 

Soricidae Trowbridge's Shrew Sorex trowbridgii 

Soricidae Vagrant Shrew Sorex vagrans 

Suidae Feral Pig Sus scrofa 

Taxonomy based on:  American Society of Mammalogists, 230 

http://www.science.smith.edu/departments/Biology/VHAYSSEN/msi/default.html 231 

 232 

 233 

 Some fungi are dispersed on the beaks of foraging and cavity-excavating woodpeckers 234 

(Jusino et al. 2016), thereby serving to inoculate live and dead trees.  Fungi such as truffles and 235 

their ectomycorrhizal sporocarps are key food resources for northern flying squirrels (Glaucomys 236 

sabrinus) (Lehmkuhl et al. 2004); in turn, flying squirrels are a key prey species of northern 237 

spotted owls (Strix occidentalis caurina) in parts of the owl's range.   238 

 Some fungi are highly detrimental to some species of wildlife, such as the deadly 239 

amphibian disease of chytridiomycosis caused by the fungus Batrachochytrium dendrobatidis, 240 

and white-nose syndrome, which is debilitating and deadly to bats, caused by the fungus 241 

Pseudogymnoascus destructans.  However, there is no evidence that these fungal pathogens are 242 

related to wood decay.   243 

 Fungi-dispersing wildlife in this region (Table 1) number at least 14 species including 244 

American pika (Ochotona princeps).  Species of deer and elk can disperse fungi through their 245 

pellets (Fig. 5a,b).  Small mammals, such as white-footed voles (Manning et al. 2003), are 246 

among the species that are documented as dispersers of mycorrhizal fungi (Maser et al. 1978, 247 

Luoma et al.2003).   248 

 In general, fungi species with hypogeous sporocarps (that release spores below ground), 249 

such as truffles, depend on animals for dispersal.  Jacobs and Luoma (2008) studied four forest 250 

http://www.science.smith.edu/departments/Biology/VHAYSSEN/msi/default.html
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rodents (Townsend's chipmunk, Siskiyou chipmunk, western red-backed vole, and southern red-251 

backed vole) that serve as dispersers of truffles including Rhizopogon and as prey for northern 252 

spotted owls.  They found that isolated green-tree retention in harvest blocks reduced 253 

consumption of truffles by the voles, and that the impact could be offset by including green-tree 254 

aggregates within a dispersed retention matrix.   255 

 Maser and Maser (1988) reported that all squirrels of five genera and eight species in 256 

Oregon conifer forests are mycophagous (eat fungi), particularly consuming belowground 257 

fruiting bodies of at least 26 genera of mycorrhizal fungi.  Northern flying squirrels proved to be 258 

a nearly obligate fungivore.  In general, they found that squirrels may be vital links involving 259 

below-ground mycorrhizal fungi, nitrogen-fixing bacteria, yeast, and conifer trees.   260 

 Marcot (2002) demonstrated how a "functional web" can be depicted for wildlife 261 

associated with various wood decay elements (snags, down wood, litter, duff, mistletoe brooms, 262 

dead parts of live trees, hollow living trees, natural tree cavities, bark crevices, and live remnant 263 

or legacy trees), including wildlife species responsible for dispersing fungi, in Washington and 264 

Oregon.   265 

 266 

WOOD DECAY AND FUNGI 267 

 The dynamics of wood decay are linked closely to the presence and ecological functions 268 

of fungi.  Decay of down wood proceeds through a series of stages marked by degree of wood 269 

breakdown, changes in the diversity of associated biota, progressions of nutrient transformations, 270 

and other processes.  Spies and Cline (1988) and Maser et al. (1979) provided a 5-category 271 

classification system of wood decay, progressing from recently downed wood with intact bark, 272 
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branches, and twigs (decay class I) to advanced states of wood breakdown into soft textures of 273 

duff (decay class V).  274 

 Throughout this mini-successional sequence of wood decay, fungi, along with 275 

mesoarthropods and other species, play key physical and biochemical roles in wood 276 

decomposition and nutrient cycling.  In particular, in young and old Douglas-fir stands, the 277 

ectomycorrhizal fungus Piloderma fallax increases in occurrence in relation to percent cover of 278 

down wood of the advanced decay class V.  The presence of truffle and false truffle fungi has 279 

also been shown to be associated with proximity to (within 1 meter of) down wood (Amaranthus 280 

et al. 1994).   281 

 Down wood, throughout its decay sequence, also serves to retain moisture, which 282 

promotes growth of ectomycorrhizae (Harvey et al. 1976, 1978; Amaranthus et al. 1989; Harmon 283 

and Sexton 1995), and which thereby serves as refugia for seedlings and mycorrhizal fungi.  284 

Such "reservoir" functions of down wood can be particularly salient in xeric forests and during 285 

dry seasons, providing for establishment of beneficial mycorrhizal fungi as a forest stand 286 

regrows (O'Hanlon-Manners and Kotanen 2004) and serving as "nurse logs" for seedlings of 287 

vascular plants (Kropp 1982, Harmon and Franklin 1989) such as western hemlock (Tsuga 288 

heterophylla), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies lasiocarpa) 289 

(Brang et al.2003).  Nurse logs also can act as refuges from pathogenic soil fungi (O'Hanlon-290 

Manners and Kotanen 2004).   291 

 Decaying down wood provides nutrients for decay fungi and pathogens.  Studies in North 292 

America and Scandinavia both reveal that high diversity of wood-decay fungal species is 293 

associated with the presence of large down wood (Kruys, et al. 1999, Crites and Dale 1998, 294 

Ohlson et al. 1997, Høiland and Bendiksen 1996, Bader et al. 1995, Wästerlund and Ingelög 295 
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1981).  Høiland and Bendiksen (1996) found that rare wood-inhabiting fungal species occurred 296 

primarily on long (mean 11 meters) and well-decayed (average decay class III) down wood.  297 

Kruys and Jonsson (1999) found that fungal species diversity is associated with total surface area 298 

of down wood.   299 

  300 

 301 

FUNGI IN FOREST MANAGEMENT 302 

 Functioning forest ecosystems in the Pacific Northwest depend on the diversity and 303 

viability of fungal species.  The presence, density, distribution, and diversity of fungi are 304 

influenced by forest stand management practices and by forest age class (Trofymow et al. 2003, 305 

Heithecker and Halpern 2006, Pilz and Perry 1984, O’Dell et al. 1992, Clarkson and Mills 1994, 306 

Cázares et al. 1998, Stendell et al. 1999, Colgan et al. 1999).  And, in turn, plant community 307 

structures including wood decay elements are influenced by fungi in complex feedback systems 308 

(van der Heijden et al. 1998). 309 

 In a study in France, Paillet et al. (2017) reported that snags, more than just large live 310 

trees, provide the bulk of tree microhabitats including cavities, fungi conks, and bark features, 311 

and that strict forest reserves contain a greater abundance of such microhabitats than do managed 312 

forests.   313 

 314 

Influence of Forest Management Activities 315 

 Thinning and clearcutting alter the fungal community and can reduce the production of 316 

sporocarps and ectomycorrhizae.  Rydin et al. (1997) found that habitat loss and some forest 317 

management practices in Europe have led to declines in the diversity of fungi and in the presence 318 



16 

 

of rare fungal species.  Bert et al. (1994) reported that many fungal species in Swedish forests are 319 

threatened by the loss of old trees and declines in coarse woody debris.  Arnstadt et al. (2016) 320 

noted that higher intensities of forest management in Germany negatively impact the volume of 321 

dead wood and richness of fungal species sporocarps.  Parladé et al. (2017) found that 322 

clearcutting and partial cutting of Scots pine forests in central Spain equally and sharply reduced 323 

the mycelium biomass of king boletes (Boletus edulis).   324 

 In European Norway spruce stands, Lõhmus (2011) studied the influence of clearcutting, 325 

planting, and thinning on polypore (bracket) fungi.  Results indicated that distinct polypore 326 

communities were present in clearcuts but their species richness declined over time and 327 

increased again 20 years post-cutting and following tree planting.  Most polypore species were 328 

found in mature, unmanaged, naturally-regenerated stands; thinning reduced species richness 329 

15%; and distinct polypore communities were present in young stands on nutrient-rich soils.   330 

 331 

Fungi in Old Forests 332 

 Under the Northwest Forest Plan (NWFP) in western Washington and Oregon and 333 

northwestern California, the Survey and Manage Program listed 234 rare fungi species found in 334 

late-successional and old-growth forests (Molina 2008), many species of which are associated 335 

with various aspects of wood decay.  Molina (2008) noted that some two-thirds of these species 336 

also occurred outside late-successional forest reserves under the NWFP, suggesting that 337 

conservation of fungal biodiversity may benefit from additional guidelines outside the reserves.  338 

 More recently, the Interagency Special Status and Sensitive Species Program of the 339 

Pacific Northwest Region of U.S. Forest Service and Bureau of Land Management has taken 340 



17 

 

over the role and duties of the Survey and Manage Program, including providing an annotated 341 

bibliography of rare species of fungi of California, Oregon, and Washington
1
.   342 

 343 

Managing for Fungal Species and Communities 344 

 Except for sensitive or listed species, no general guidelines are in place to provide for 345 

conservation or restoration of fungal communities, including those associated with wood decay 346 

elements.  It is known, though, that retention of legacy trees -- usually mature or old-growth trees 347 

retained during forest harvest operations -- can provide some degree of conservation of 348 

beneficial fungi such as mycorrhizae (Smith, et al 2000).  Retaining green trees has been 349 

attributed by Luoma (2001) to the retention the rare truffle Arcangeliella camphorata which is 350 

otherwise lost in clearcuts such as demonstrated in southwest Oregon (Clarkson and Mills 1994, 351 

Amaranthus et al. 1994).  In Washington, Cline et al. (2005) reported that Douglas-fir seedlings 352 

nearer (< 6 m) to residual mature Douglas-fir trees in recently harvested green-tree retention 353 

units had higher species richness and diversity of ectomycorrhizal fungi than did seedlings far 354 

from residual trees.  They thus suggested that residual mature, legacy trees can maintain or 355 

accelerate recovery of ectomycorrhizal fungi following harvest.  As well, retained stumps can 356 

provide environments for conks and other fungi (Fig. 6).   357 

 In some cases, active management can help retain or restore desired fungi by deliberately 358 

introducing fungi in live trees.  This can help foster wood decay and create snags and dead parts 359 

of live trees for wildlife habitat, such as demonstrated by Bednarz et al. (2013) and Filip et al. 360 

(2011) in forests of Oregon and Washington. 361 

                                                 
1
 http://www.fs.fed.us/r6/sfpnw/issssp/documents3/cpt-fu-effects-guidelines-att3-annotated-bibliography-2013-

10.docx 

http://www.fs.fed.us/r6/sfpnw/issssp/documents3/cpt-fu-effects-guidelines-att3-annotated-bibliography-2013-10.docx
http://www.fs.fed.us/r6/sfpnw/issssp/documents3/cpt-fu-effects-guidelines-att3-annotated-bibliography-2013-10.docx
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 To maintain fungal biodiversity, the habitat and resource associations of multiple species 362 

need to be considered.  This can be achieved, in part, by providing a range of sizes and decay 363 

classes of down wood, although such associations of individual species and their responses to 364 

various amounts, patterns, sizes, decay classes, and timing of down wood are poorly known and 365 

need much study.  In general, though, providing down wood as well as living host plants of the 366 

correct ages and species can help maintain fungal diversity.   367 

 In Sweden, Edman and Jonsson (2001) and Edman et al. (2007) reported that the spatial 368 

distribution of down logs and wood-decaying fungi are influenced by wind and gap-phase 369 

dynamics in forests of old-growth Norway spruce.  They also found that rare fungi species have 370 

specific substrate associations and that temporal variations in the patterns of canopy gaps and 371 

down wood abundance can affect fungi biodiversity.  White et al. (2012) studied the effect of a 372 

massive ice storm in forests of southern Quebec, Canada, which caused forest canopy gap 373 

openings that became colonized by wood-rotting fungi, saproxylic insects, salamanders, and 374 

other organisms.  Such canopy gap dynamics apparently served to maintain the diversity of 375 

opening-dependent taxa including some fungi.   376 

 However, in a study of ectomycorrhizal fungi based on epigeous sporocarps in a cedar-377 

hemlock forest of northwest British Columbia, Canada, Durall et al. (1999) found that fungal 378 

species richness decreased exponentially as a function of increasing size of forest gap cutblocks, 379 

particularly in gaps > 900 m
2
.  Maximum fungal species richness was found ≤ 7 m from the 380 

forest edge.  They suggested sampling both sporocarps and root tips for accurately determining 381 

the ectomycorrhizal fungal community.   382 

 In a study of northern hardwood forests, Brazee et al. (2014) found various fungi species 383 

associated with a variety of conditions, including stumps, down wood of small (< 20 cm 384 
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diameter) through large (> 40 cm diameter) sizes, well-decayed substrates, minor host tree 385 

species, and canopy gaps.  In Norway spruce forests of Sweden, Edman et al. (2004) found that 386 

fungi was more common in sites rich in down wood, and that fungi species richness was greater 387 

associated with large logs than with small logs.  Crawford et al. (1990) found that filamentous 388 

fungi and yeast communities in Douglas-fir logs varied between decay classes III and IV, and 389 

that they discovered a total of 18 genera and 36 species of fungi among logs of both decay 390 

classes.   391 

 Studies are needed in the Pacific Northwest to quantify the amount of down wood -- 392 

number of pieces, sizes, total biomass, percent forest floor cover, and other attributes -- 393 

necessary for maintaining or restoring fungal biodiversity and viable levels of individual fungi 394 

species, especially rare species.  Although no such specific guidelines exist in the Pacific 395 

Northwest, it can be assumed that drier or more xeric forest types may require greater amounts of 396 

down wood that do wetter or more mesic forest types.  Also, fungi tend to occur in patchy 397 

distributions because of the patchy occurrence of their substrates.  Providing down wood of 398 

various sizes, species, and decay classes in patchy distributions throughout stands in managed 399 

forest landscapes may help restore and maintain desired fungal communities.   400 

 Surveys of wood-inhabiting fungi in spruce-hardwood forests of central Finland 401 

(Juutilainen et al. 2011) found a distinct fungal community in the smallest pieces of down wood; 402 

by excluding pieces < 1cm diameter, fungi species richness, including rare species, was 403 

underestimated by 10% and occurrences by 46%.  Surveying fungi only in larger down wood 404 

(coarse woody debris) seriously underestimated richness and abundance of dead wood-associated 405 

fungi.   406 
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 It takes time for mycorrhizae to colonize down wood and coarse woody debris, because 407 

most mycorrhizal fungi in wood are associated with roots.  A good example is Boletus 408 

(Aureoboletus) mirabilis, which always fruits from decay class 4 or 5 wood, but that is because it 409 

is mycorrhizal with the roots of hemlock in the wood.  This time delay needed for colonization 410 

and association with roots highlights the role and value of retaining some late seral forests and 411 

old legacy trees as refugia and as source material for beneficial fungi (Clarkson and Mills 1994).  412 

Otherwise, sources may be relegated to disturbance-resistant fungi spores remaining in soil or in 413 

whatever unburned down wood may remain after disturbance (Baar et al. 1999).  Still, 414 

reappearance of some fungi may appeared delayed following disturbance, such as chanterelles 415 

(Cantharellus) appearing in western hemlock stands after 20 years following disturbance along 416 

the Washington coast (Pilz et al. 1998).  But once established in appropriate habitat conditions, 417 

mycelial colonies of fungi can persist for many years (Smith et al. 1992, De la Bastide et al. 418 

1994, Dahlberg and Stenlid 1995).   419 

 Lehmkuhl et al. (2007) discussed a decision-aiding model FuelSolve that can be used to 420 

guide management of fuels in forests under multiple objectives such as providing habitat for 421 

northern spotted owls and their prey, along with live and dead vegetation, mycorrhizal fungi, and 422 

arboreal lichens, as elements of the owl's habitat.   423 

 Further ideas on managing Pacific Northwest forests for fungi can be found in Molina et 424 

al. (2001).   425 

  426 

Monitoring Fungi 427 

 Fungi are often difficult to detect, especially for determining the presence of rare, 428 

sparsely-distributed, and seldom-fruiting species.  Most species can be detected only when they 429 
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produce reproductive structures such as cups, truffles, conks, and mushrooms (Figs. 7 a,b).  430 

Different species may produce such detectible structures at different times and seasons (Hunt and 431 

Trappe 1987, Luoma 1991), depending on species-specific relationships to nutrient availability 432 

and environmental conditions of temperature, light, pH, and moisture.  O'Dell et al. (1996) 433 

recommended surveying for fungi at various times of the year, particularly in spring and autumn, 434 

for at least five years, to provide any assurance of detection.   435 

 Lassauce et al. (2011) tested the idea that dead wood volume could be monitored as an 436 

index to species richness of saproxylic beetles and fungi in various forest types.  However, they 437 

found that correlations were only moderately significant and concluded that dead wood volume 438 

is likely an imprecise indicator of saproxylic beetle and fungi biodiversity.  Further, the efficacy 439 

of using dead wood volume to indicate saproxylic beetle diversity differed between boreal and 440 

temperate forests, with slightly greater predictability in the former.  They suggested that 441 

additional landscape-level variables, such as the type and decay class of dead wood, be included 442 

in monitoring dead wood and associated organisms.  Parladé et al. (2017) suggested that surveys 443 

of soil mycelium masses (Fig. 8) can usefully indicate the response of some fungi to 444 

management activities, and could be useful adjuncts to monitoring sporocarp fruiting bodies of 445 

interest to gatherers.   446 

 Another challenge to monitoring fungi related to wood decay is to identify the 447 

appropriate spatial and temporal scales.  In a review of studies on saproxylic species (fungi, 448 

beetles, and lichens) and associated dead wood distribution in Europe, Sverdrup-Thygeson et al. 449 

(2014) identified key information gaps.  They found a large variation among taxa of such species 450 

in response to spatial and temporal variations in dead wood patterns.  They suggested that time-451 
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lag effects, in particular, need more study at landscape scales and for listed saproxylic species 452 

before firm management guidelines can be developed for them.   453 

 454 

 455 

INFLUENCE OF FIRE 456 

 The main influence of fire on wood decay-associated fungi relates to how much sound or 457 

decaying wood is created or destroyed.  Prescribed fires and wildfires alike can kill part or all of 458 

standing trees which, if not engulfed and fully charred, could provide fungi substrates standing or 459 

down.  Fire also can eliminate fungi substrates, particularly with piling and burning of forest 460 

slash following timber harvests.   461 

 In forests of the eastern Cascades of Oregon, Smith et al. (2017) studied soil fungal and 462 

bacterial communities and biogeochemical processes following severe and less severe burns.  463 

They found that soil fungi and bacteria steadily recolonized following the burns, but with a 464 

different community composition between the two fire severities.  The greatest difference in 465 

fungal and bacterial community composition was evident early after the burns and became more 466 

similar over time.   467 

 In Swedish forests of Scots pine, Jonsson et al. (1999) compared chronosequences of 468 

ectomycorrhizae in stands burned by low-intensity wildfire and unburned late-successional 469 

stands.  They found most of the common species in all sites, suggesting that ectomycorrhizae 470 

exhibit a continuity following low-intensity burning.  Importantly, the below-ground species 471 

composition was not reflected in that of the above-ground sporocarps.   472 

 473 

 474 
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FUNGI AS A CONSERVATION CHALLENGE 475 

 Maintaining and restoring desired wood decay-associated fungi can be quite a challenge 476 

for management (O'Dell et al. 1996) given the problems of intermittent detectability, variable 477 

dispersal, patchy distributions, and lack of scientific information on species' life histories and 478 

habitat requirements.  Further challenges include identifying species, the need for taxonomic 479 

studies, and incomplete understanding of their ecological functional roles in forest ecosystems.  480 

Studies conducted over the past decade have shed light on some fungi species in some 481 

geographic areas and forest types of the Pacific Northwest (e.g., see above for the footnote on the 482 

annotated bibliography).   483 

 In a global review of conservation strategies for managing dead wood for biodiversity, 484 

Seibold et al. (2015) found many information gaps and, at best, only scattered management 485 

guidelines.  Their meta-analysis revealed that most studies have focused on early stages of wood 486 

decay and that some taxa, including fungi, are under-represented.  The studies do confirm the 487 

overall benefits of dead wood for biodiversity, but there is a need for research on advanced decay 488 

stages and on the influence on non-saproxylic organisms.   489 

 Still, fungi are key players in native and productive forests, and offer important roles in 490 

nutrient cycling, food sources, tree production, and maintenance of soil health.   491 

  492 
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Figure 1.  Orange jelly mushroom, Dacrymyces chrysospermus (prev. D. palmatus), found on a 786 

down log of Douglas-fir in the Cascade Mountains of southwestern Washington.  Photo by Bruce 787 

G. Marcot. 788 
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Figure 2.  Bird's nest fungus, Nidula niveotomentosa, on a moist Douglas-fir log in the central 793 

coast range of Oregon.  This unique fungal structure consists of a nest cup called a peridium, that 794 

holds "egg" structures called peridioles which contain spore bodies called gleba.  In bird's nest 795 

fungi, the peridioles are held in place in the cups with a gelatinous glue-like material until they 796 

disperse from splashing raindrops.  Species of Nidula can reproduce both sexually and asexually, 797 

and they produce a ketone chemical with the flavor of raspberry.  Photos by Bruce G. Marcot. 798 
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Figure 3.  Veined cup fungus, poss. Disciotis venosa, in forest litter and down wood fragments, 803 

in a Douglas-fir forest of the southern Washington Cascade Mountains.  This is one of several 804 

brown-colored cup fungi.  Although related to the sought-after morel mushrooms, veined cups 805 

are likely toxic if eaten raw.  They are partially mycorrhizal and thus can play a role in 806 

maintaining tree productivity and forest health.  Photo by Bruce G. Marcot. 807 
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Figure 4.  A darkling fungus beetle (Tenebrionidae) collected in mid-elevation conifer forests of 812 

the Cispus area south of Mount St. Helens, Washington Cascade Mountains.  Photo by Bruce G. 813 

Marcot. 814 
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Figure 5 a,b.  Fungi dispersed via pellet droppings from Rocky Mountain elk.  Tower and 820 

Summit Burn, Malheur National Forest, eastern Oregon.  Photo by Bruce G. Marcot. 821 
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Figure 6.  Cut stumps, along with coarse and fine down wood and other wood decay elements, 829 

can provide substrates for wood-decaying fungi such as these conks of Fomatopsis pinicola.  830 

Gifford Pinchot National Forest, Washington.  Photo by Bruce G. Marcot. 831 
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Figure 7 a,b.  Fruiting bodies (sporocarps) of fungi may appear intermittently, seasonally, or 837 

rarely, depending on the species, its rarity, and environmental conditions, making monitoring a 838 

challenge.  7a: Sporocarps of Galerina marginata, a most deadly species, on a down Douglas-fir 839 

log.  7b: Sporocarps from Mycea mycelia beneath the log; their mycelia commonly grow from 840 

fine woody debris and litter.  Photos by Bruce G. Marcot. 841 
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Figure 8.  Fungi mycelium mass beneath a log.  Studies suggest that monitoring just the fruiting 850 

bodies (sporocarps, Fig. 7) may underestimate fungal community diversity, and that surveying 851 

soil mycelium masses can better indicate response of fungi to forest management activities.  852 

Photo by Bruce G. Marcot. 853 
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